Local Similarity-Aware Deep Feature Embedding
نویسندگان
چکیده
Existing deep embedding methods in vision tasks are capable of learning a compact Euclidean space from images, where Euclidean distances correspond to a similarity metric. To make learning more effective and efficient, hard sample mining is usually employed, with samples identified through computing the Euclidean feature distance. However, the global Euclidean distance cannot faithfully characterize the true feature similarity in a complex visual feature space, where the intraclass distance in a high-density region may be larger than the interclass distance in low-density regions. In this paper, we introduce a Position-Dependent Deep Metric (PDDM) unit, which is capable of learning a similarity metric adaptive to local feature structure. The metric can be used to select genuinely hard samples in a local neighborhood to guide the deep embedding learning in an online and robust manner. The new layer is appealing in that it is pluggable to any convolutional networks and is trained end-to-end. Our local similarity-aware feature embedding not only demonstrates faster convergence and boosted performance on two complex image retrieval datasets, its large margin nature also leads to superior generalization results under the large and open set scenarios of transfer learning and zero-shot learning on ImageNet 2010 and ImageNet-10K datasets.
منابع مشابه
Link Prediction using Network Embedding based on Global Similarity
Background: The link prediction issue is one of the most widely used problems in complex network analysis. Link prediction requires knowing the background of previous link connections and combining them with available information. The link prediction local approaches with node structure objectives are fast in case of speed but are not accurate enough. On the other hand, the global link predicti...
متن کاملDeep adaptive feature embedding with local sample distributions for person re-identification
Person re-identification (re-id) aims to match pedestrians observed by disjoint camera views. It attracts increasing attention in computer vision due to its importance to surveillance system. To combat the major challenge of cross-view visual variations, deep embedding approaches are proposed by learning a compact feature space from images such that the Euclidean distances correspond to their c...
متن کاملDetecting Overlapping Communities in Social Networks using Deep Learning
In network analysis, a community is typically considered of as a group of nodes with a great density of edges among themselves and a low density of edges relative to other network parts. Detecting a community structure is important in any network analysis task, especially for revealing patterns between specified nodes. There is a variety of approaches presented in the literature for overlapping...
متن کاملSSDH: Semi-supervised Deep Hashing for Large Scale Image Retrieval
The hashing methods have been widely used for efficient similarity retrieval on large scale image datasets. The traditional hashing methods learn hash functions to generate binary codes from hand-crafted features, which achieve limited accuracy since the hand-crafted features cannot optimally represent the image content and preserve the semantic similarity. Recently, several deep hashing method...
متن کاملLight-Weight Spatial Distribution Embedding of Adjacent Features for Image Search
Binary code embedding methods can effectively compensate the quantization error of bag-of-words (BoW) model and remarkably improve the image search performance. However, the existing embedding schemes commonly generate binary code by projecting local feature from original feature space into a compact binary space. The spatial relationship between the local feature and its neighbors are ignored....
متن کامل